The Hybrid BFGS-CG Method in Solving Unconstrained Optimization Problems

Author:

Ibrahim Mohd Asrul Hery1ORCID,Mamat Mustafa23,Leong Wah June4

Affiliation:

1. School of Applied Sciences and Foundation, Infrastructure University Kuala Lumpur, 43000 Kajang, Malaysia

2. Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Tembila Campus, 22200 Besut, Malaysia

3. Department of Mathematics, Faculty of Science and Technology, Universiti Malaysia Terengganu (UMT), 21030 Kuala Terengganu, Malaysia

4. Department of Mathematics, Faculty of Science, Universiti Putra Malaysia (UPM), 43400 Serdang, Malaysia

Abstract

In solving large scale problems, the quasi-Newton method is known as the most efficient method in solving unconstrained optimization problems. Hence, a new hybrid method, known as the BFGS-CG method, has been created based on these properties, combining the search direction between conjugate gradient methods and quasi-Newton methods. In comparison to standard BFGS methods and conjugate gradient methods, the BFGS-CG method shows significant improvement in the total number of iterations and CPU time required to solve large scale unconstrained optimization problems. We also prove that the hybrid method is globally convergent.

Funder

Fundamental Research Grant Scheme

Publisher

Hindawi Limited

Subject

Applied Mathematics,Analysis

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3