The Effect of Foundation Flexibility on Probabilistic Seismic Performance of Plan-Asymmetric Buildings with Different Strength Distributions

Author:

Mohammadzadeh Osalu Sahar1,Shakib Hamzeh1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran

Abstract

In this research, the probabilistic seismic performance of asymmetric reinforced concrete wall-frame buildings with different strength distributions incorporating foundation flexibility effects is examined. By using probability-based performance evaluation approach, it is possible to provide a more accurate prediction of the different strength distribution effect on the seismic performance of asymmetric buildings and find the most efficient strength distribution for meeting each performance level. These efficient distributions can be adopted in the performance-based design of asymmetric buildings. For this purpose, first, the regression analysis and the concepts of efficiency and sufficiency were used to determine an optimal intensity measure (IM) for incremental dynamic analysis and evaluating the seismic response of the considered building models. Then, the proper magnitude of interstory drift capacity for this type of buildings in each limit state was estimated using the damage index concept. Finally, the effects of different strength distributions and the flexibility of foundation were studied on the seismic performance of the asymmetric buildings by investigating the mean annual frequencies of exceeding structural performance levels and confidence levels to satisfy performance objectives. It is concluded that irregular distributions of stiffness and strength in the plan of a building highly affect the seismic performance of buildings. Also, the results show that the optimum strength distribution is a function of the objective performance level and these optimum strength distributions are the same for both fixed- and flexible-base conditions. Meanwhile, the flexible effect of foundation increases the mean annual frequencies of exceedance within the range of 10% to 45% and significantly decreases the confidence levels in most cases.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3