Robust Geotechnical Design for Soil Slopes considering Uncertain Parameters

Author:

Zhou Xuejun1ORCID,Huang Wenxiong2,Li Jie3ORCID,Chen Ding2

Affiliation:

1. College of Mathematics and Statistics, Huanggang Normal University, Huanggang, Hubei, China

2. College of Mechanics and Materials, Hohai University, Nanjing, China

3. School of Engineering, RMIT University, Melbourne, VIC, Australia

Abstract

Designing the geometry of soil slope is an effective treatment for preventing slope failure. How to deal with the uncertainties involved in soil parameters in geotechnical design is a main concern of geotechnical engineers. In this study, a robust geotechnical design for soil slopes (RGDS) approach was proposed, in which the Uncertainty Theory was introduced to describe explicitly the uncertainties involved in soil parameters. The uncertain reliability is often used to describe the risk of slope failure. The design robustness describing the insensitivity between the variation in the system response and the variation of input uncertain soil parameters was evaluated by the signal-to-noise ratio. The objectives of this design are to maximize the design robustness, minimize the excavation cost, and guarantee the safety (maximize the uncertain reliability). Therefore, the RGDS was formulated as a multiobjective optimization, and the optimal design can be determined based on the concepts of Pareto front and knee point. The proposed RGDS approach was illustrated through a numerical case of a two-layer slope design. The numerical results indicate that the RGDS approach is not only more intuitive and easier to follow but also more computationally efficient.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3