Computer Vision‐Based Pier Settlement Displacement Measurement of a Multispan Continuous Concrete Highway Bridge under Complex Construction Environments

Author:

Zhan YulinORCID,Huang Yuanyuan,Fan Zihao,Li Binghui,An Jiawei,Shao Junhu,Tian YongdingORCID

Abstract

Various concrete bridges have been built across oceans, valleys, and mountains; however, the settlement displacement of bridge piers caused by environmental changes or self‐weight during construction phases often leads to uneven stresses, cracking, and eventual collapse. To address the labor‐intensive and high‐cost issues of pier displacement monitoring using contact‐type sensors, this paper proposes an automatic vision‐based method for measuring pier settlement displacement under complex construction environments, such as complex image backgrounds, varying ambient light, and camera movement. In the proposed method, a deep learning network was first employed to eliminate the adverse effect of complex image backgrounds and varying ambient light on the accuracy of target detection; then, an adaptive displacement extraction algorithm without a human‐computer interaction process was developed to automatically extract the center coordinates of targets attaching to the bridge piers and reference platform; finally, the pier settlement displacement was calculated by using the relative displacements obtained by a dual camera system to eliminate the measurement error caused by camera translation and rotation movements. Laboratory tests of a cantilever beam and field tests of a continuous multispan concrete girder highway bridge under construction have successfully validated the effectiveness and robustness of the developed methodology. The results obtained in this paper can provide some insights for engineers in applying computer vision technology for the real‐time monitoring of bridge displacements.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Sichuan Province Science and Technology Support Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3