The Effectual Spectrum Defragmentation Algorithm with Holding Time Sensitivity in Elastic Optical Network (EON)

Author:

Selva Kumar S.1ORCID,Kamalakannan J.2,Seetha R.2,Asha N.2ORCID,Raja Kiruba Thangam2ORCID,Sree Dharinya S.2,Sucharitha M.3,Kalaivani S.2

Affiliation:

1. School of Computer Science and Engineering (SCOPE), VIT-AP University, Amaravathi, India

2. School of Information Technology and Engineering (SITE), Vellore Institute of Technology, Vellore, India

3. School of Electronics Engineering (SENSE), VIT-AP University, Amaravathi, India

Abstract

The elastic optical network (EON) fulfills the upcoming generation network requirements such as high-definition videos, high bandwidth demand services, and ultra-high-definition televisions. The key issues in EON are routing spectrum assignment and spectrum fragmentation for spectrum allocation. The spectrum fragmentation issues are resultant in poor consumption of spectrum resources and an increase in the new connection blocking. A flexible defragmentation algorithm must utilize more spectrum resources with a high transmission rate. This paper presents a new multiconstrained defragmentation algorithm (MCDFA) for elastic optical networks. The MCDFA addressed two key issues: spectrum allocation for new connections and then reconfiguring the existing connections in a nondisruptive manner. The first-last-exact fit spectrum allocation policy assigns the spectrum slots during the new connection request. It splits each light path request by disjoint/ nondisjoint and by efficiently handling the small fragmented slots in spectrum resources. The simulation results are evaluated using standard metrics such as bandwidth blocking probability, bandwidth fragmentation ratio, and spectrum utilization gain. The results also demonstrated that our proposed algorithm generates promised solution to EON’s routing, spectrum assessment, and fragmentation issues.

Publisher

Hindawi Limited

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3