Reliability Analysis of Load-SharingK-out-of-NSystem Considering Component Degradation

Author:

Yang Chunbo1ORCID,Zeng Shengkui12,Guo Jianbin12ORCID

Affiliation:

1. School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China

2. Science and Technology on Reliability and Environmental Engineering Laboratory, Beijing 100191, China

Abstract

TheK-out-of-Nconfiguration is a typical form of redundancy techniques to improve system reliability, where at leastK-out-of-Ncomponents must work for successful operation of system. When the components are degraded, more components are needed to meet the system requirement, which means that the value ofKhas to increase. The current reliability analysis methods overestimate the reliability, because using constantKignores the degradation effect. In a load-sharing system with degrading components, the workload shared on each surviving component will increase after a random component failure, resulting in higher failure rate and increased performance degradation rate. This paper proposes a method combining a tampered failure rate model with a performance degradation model to analyze the reliability of load-sharingK-out-of-Nsystem with degrading components. The proposed method considers the value ofKas a variable which is derived by the performance degradation model. Also, the load-sharing effect is evaluated by the tampered failure rate model. Monte-Carlo simulation procedure is used to estimate the discrete probability distribution ofK. The case of a solar panel is studied in this paper, and the result shows that the reliability considering component degradation is less than that ignoring component degradation.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3