Development of Lightweight Polymer Laminates for Radiation Shielding and Electronics Applications

Author:

Vignesh S.1ORCID,Winowlin Jappes J. T.1ORCID,Nagaveena S.2,Krishna Sharma R.3,Adam Khan M.1ORCID,More Chaitali V.4,Rajini N.1ORCID,Varol Temel5ORCID

Affiliation:

1. Department of Mechanical Engineering, Kalasalingam Academy of Research and Education, 626126, Tamilnadu, India

2. Department of Nanoscience and Nanotechnology, S.T. Hindu College, 629002, Nagercoil, Tamilnadu, India

3. Department of Physics, S.T. Hindu College, 629002, Nagercoil, Tamilnadu, India

4. Nuclear Physics Research Laboratory, Dr. B.A.M. University, 431004, Aurangabad, India

5. Department of Metallurgical and Materials Engineering, Karadeniz Technical University, Trabzon, Turkey

Abstract

The present study portrays the development of lightweight epoxy laminates filled with boron carbide (B4C) and lead (Pb) particles through a novel layered molding and curing route. Six different laminates of single and tri-layers were prepared with varying compositions and were subjected to thermal, radiation shielding, and dielectric studies. Radiation shielding test were done using a narrow beam setup with six different sources such as Cobalt-57 (Co57-122 keV), Barium-133 (Ba133-356 keV), Sodium-22 (Na22-511 and 1275 keV), Cesium-137 (Cs137-662 keV), Manganese-54 (Mn54-840 keV), and Cobalt-60 (Co60-1170 and 1330 keV). The dielectric studies were done to understand the dielectric constant, dielectric loss factor, and AC conductivity at different temperature and frequency ranges. From the characterizations, it was found that the thermal stability of the single-layered sample increased with respect to the addition of B4C and Pb particles, which may be due to the thermally stable nature of the particles. The radiation shielding study of the samples witnessed the superior characteristics and radiation shielding ability of sample D (40% Pb) and sample E with Pb cladding at incident gamma radiation energy of 662 keV. The dielectric constant of the samples increased significantly at higher temperatures and the dielectric loss factor increased with an increase in temperature and decreased with an increase in frequency. The AC conductivity of the samples increased with respect to an increase in temperature and frequency.

Funder

Artificial Intelligence Research Promotion Foundation

Publisher

Hindawi Limited

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3