Predicting Remaining Useful Life Based on Hilbert–Huang Entropy with Degradation Model

Author:

Zheng Yuhuang12ORCID

Affiliation:

1. Department of Physics and Information Engineering, Guangdong University of Education, Guangzhou 510303, China

2. Guangdong Province Key Laboratory of Precision Equipment and Manufacturing Technology, Guangzhou 510641, China

Abstract

Prognostics health management (PHM) of rotating machinery has become an important process for increasing reliability and reducing machine malfunctions in industry. Bearings are one of the most important equipment parts and are also one of the most common failure points. To assess the degradation of a machine, this paper presents a bearing remaining useful life (RUL) prediction method. The method relies on a novel health indicator and a linear degradation model to predict bearing RUL. The health indicator is extracted by using Hilbert–Huang entropy to process horizontal vibration signals obtained from bearings. We present a linear degradation model to estimate RUL using this health indicator. In the training phase, the degradation detection threshold and the failure threshold of this model are estimated by the distribution of 600 bootstrapped samples. These bootstrapped samples are taken from the six training sets. In the test phase, the health indicator and the model are used to estimate the bearing’s current health state and predict its RUL. This method is suitable for the degradation of bearings. The experimental results show that this method can effectively monitor bearing degradation and predict its RUL.

Funder

Guangdong Provincial Key Laboratory of Precision Equipment and Manufacturing Technology

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3