Comparison of Geographical Traceability of Wild and Cultivated Macrohyporia cocos with Different Data Fusion Approaches

Author:

Wang Li12,Wang Qinqin34,Wang Yuanzhong4ORCID,Wang Yunmei1ORCID

Affiliation:

1. Quality Standards and Testing Technology Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China

2. College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China

3. The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming 650021, China

4. Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China

Abstract

Poria originated from the dried sclerotium of Macrohyporia cocos is an edible traditional Chinese medicine with high economic value. Due to the significant difference in quality between wild and cultivated M. cocos, this study aimed to trace the origin of the fungus from the perspectives of wild and cultivation. In addition, there were quite limited studies about data fusion, a potential strategy, employed and discussed in the geographical traceability of M. cocos. Therefore, we traced the origin of M. cocos from the perspectives of wild and cultivation using multiple data fusion approaches. Supervised pattern recognition techniques, like partial least squares discriminant analysis (PLS-DA) and random forest, were employed in this study using. Five types of data fusion involving low-, mid-, and high-level data fusion strategies were performed. Two feature extraction approaches including the selecting variables by a random forest-based method—Boruta algorithm and producing principal components by the dimension reduction technique of principal component analysis—were considered in data fusion. The results indicate the following: (1) The difference between wild and cultivated samples did exist in terms of the content analysis of vital chemical components and fingerprint analysis. (2) Wild samples need data fusion to realize the origin traceability, and the accuracy of the validation set was 95.24%. (3) Boruta outperformed principal component analysis (PCA) in feature extraction. (4) The mid-level Boruta PLS-DA model took full advantage of information synergy and showed the best performance. This study proved that both geographical traceability and optimal identification methods of cultivated and wild samples were different, and data fusion was a potential technique in the geographical identification.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Science Applications,Instrumentation,General Chemical Engineering,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3