Affiliation:
1. Naval Aviation University, Yantai 264001, China
2. Naval Research Institution, Shanghai 200436, China
Abstract
Early fault diagnosis of bearings is the basis of condition-based maintenance. To overcome the difficulty of early fault diagnosis for the mechanical system, a new conception named quantile multiscale permutation entropy (QMPE) is defined, and a new feature extraction method based on QMPE is proposed. On the basis of the multiscale entropy, the multiscale permutation entropy for the gathered vibration signal of equipment is obtained, and the sample quantile is calculated, which is employed to analyze the weak change of the variation signal. The proposed method is verified with the full lifetime datasets of a certain bearing, which proves that signal features extracted by the QMPE method can not only truly express the bearing detailed condition changing from normal to fault but also duly detect the early fault of the bearing. Comparing with other methods for early fault diagnosis, the proposed method can advance the finding time of the early fault obviously.
Subject
General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献