Effects of Systemic Pesticides Imidacloprid and Metalaxyl on the Phyllosphere of Pepper Plants

Author:

Moulas Constantinos1,Petsoulas Christos1,Rousidou Konstantina1,Perruchon Chiara1,Karas Panagiotis1,Karpouzas Dimitrios G.1

Affiliation:

1. University of Thessaly, Department of Biochemistry and Biotechnology, Ploutonos 26 and Aiolou Street, 41221 Larisa, Greece

Abstract

Microbes inhabiting the phyllosphere of crops are exposed to pesticides applied either directly onto plant foliage or indirectly through soil. Although, phyllosphere microbiology has been rapidly evolving, little is still known regarding the impact of pesticides on the epiphytic microbial community and especially on fungi. We determined the impact of two systemic pesticides (metalaxyl and imidacloprid), applied either on foliage or through soil, on the epiphytic fungal and bacterial communities via DGGE and cloning. Both pesticides induced mild effects on the fungal and the bacterial communities. The only exception was the foliage application of imidacloprid which showed a more prominent effect on the fungal community. Cloning showed that the fungal community was dominated by putative plant pathogenic ascomycetes (Erysiphaceae andCladosporium), while a few basidiomycetes were also present. The former ribotypes were not affected by pesticides application, while selected yeasts (Cryptococcus) were stimulated by the application of imidacloprid suggesting a potential role in its degradation. A less diverse bacterial community was identified in pepper plants. Metalaxyl stimulated an Enterobacteriaceae clone which is an indication of the involvement of members of this family in fungicide degradation. Further studies will focus on the isolation of epiphytic microbes which appear to be stimulated by pesticides application.

Funder

University of Thessaly

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3