Affiliation:
1. Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
2. Neurorehabilitation Center, Beijing Rehabilitation Hospital of Capital Medical University, Beijing 100144, China
Abstract
Glioma is a deadly tumor that accounts for the vast majority of brain tumors. Thus, it is important to elucidate the molecular pathogenesis and potential diagnostic and prognostic biomarkers of glioma. In the present study, gene expression profiles of GSE2223 were obtained from the Gene Expression Omnibus (GEO) database. Core modules and hub genes related to glioma were identified using weighted gene coexpression network analysis (WGCNA) and protein-protein interaction (PPI) network analysis of differentially expressed genes (DEGs). After a series of database screening tests, we identified 11 modules during glioma progression, followed by six hub genes (RAB3A, TYROBP, SYP, CAMK2A, VSIG4, and GABRA1) that can predict the prognosis of glioma and were validated in glioma tissues by qRT-PCR. The CIBERSORT algorithm was used to analyze the difference of immune cell infiltration between the glioma and control groups. Finally, Identification VSIG4 for immunotherapy response in patients with glioma demonstrating utility for immunotherapy research.
Funder
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献