Medical Information Mining-Based Visual Artificial Intelligence Emergency Nursing Management System

Author:

Dong Aihua1ORCID,Guo Jian1ORCID,Cao Yongzhi2ORCID

Affiliation:

1. Department of Emergency, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China

2. Transfusion Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China

Abstract

This study aims to design a set of the visual artificial intelligence system based on medical information mining for hospital emergency care management. A visual artificial intelligence emergency first aid nursing management system is designed by analyzing the needs of the emergency first aid nursing management system. The results show that system personnel allocation, comparative management, record management, query management analysis, basic setup analysis, nursing management basis, and nonfunctional requirements all need to be optimized for the emergency first aid management system. In this study, the comparative management module, log management module, and the query management module are designed, and the emergency first aid management system of different APP terminal functions in different modules is described in detail. The nursing document query business is tested, and the corresponding time of query of nursing assessment sheet, nurse shift record, nurse record, and physical sign observation sheet is 375.50 ms, 351.48 ms, 336.36 ms, and 245.57 ms, respectively. It shows that the visual artificial intelligence emergency nursing management system based on medical information mining can provide convenience for clinical work to a large extent and has potential application value in hospital emergency nursing work.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3