Radiomics Signatures of Computed Tomography Imaging for Predicting Risk Categorization and Clinical Stage of Thymomas

Author:

Wang Xihai1ORCID,Sun Wei1,Liang Hongyuan1,Mao Xiaonan1,Lu Zaiming1ORCID

Affiliation:

1. Department of Radiology, Shengjing Hospital, China Medical University, Shenyang 110000, China

Abstract

Purpose. The aim of this study is to develop and compare performance of radiomics signatures using texture features extracted from noncontrast enhanced CT (NECT) and contrast enhanced CT (CECT) images for preoperative predicting risk categorization and clinical stage of thymomas. Materials and Methods. Between January 2010 and October 2018, 199 patients with surgical resection and histopathologically confirmed thymoma were enrolled in this retrospective study. We extracted 841 radiomics features separately from volume of interest (VOI) in NECT and CECT images. The features with poor reproducibility and highly redundancy were removed. Then a least absolute shrinkage and selection operator method (LASSO) logistic regression model with 10-fold cross validation was used for further feature selection and radiomics signatures build. The predictive performances of radiomics signatures were assessed by receiver operating characteristic (ROC) analysis. The areas under the receiver operating characteristic curve (AUC) between radiomics signatures were compared by using Delong test. Result. In differentiating high risk thymomas from low risk thymomas, the AUC, sensitivity, and specificity were 0.801(95% CI 0.740–0.863), 0.752 and 0.767 for radiomics signature based on NECT images, and 0.827 (95% CI 0.771 -0.884), 0.798, and 0.722 for radiomics signature based on CECT images. But there was no significant difference (p=0.365) between them. In differentiating advanced stage thymomas from early stage thymomas, the AUC, sensitivity, and specificity were 0.829 (95%CI 0.757-0.900), 0.712, and 0.806 for radiomics signature based on NECT images and 0.860 (95%CI 0.803-0.917), 0.699, and 0.889 for radiomics signature based on CECT images. There was no significant difference (p=0.069) between them. The accuracy was 0.819 for radiomics signature based on NECT images, 0.869 for radiomics signature based on CECT images, and 0.779 for radiologists. Both radiomics signatures had a better performance than radiologists. But there was significant difference (p = 0.025) only between CECT radiomics signature and radiologists. Conclusion. Radiomics signatures based on texture analysis from NECT and CECT images could be utilized as noninvasive biomarkers for differentiating high risk thymomas from low risk thymomas and advanced stage thymomas from early stage thymoma. As a quantitative method, radiomics signature can provide complementary diagnostic information and help to plan personalized treatment for patients with thymomas.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3