Short-Term PV Power Forecasting Using a Hybrid TVF-EMD-ELM Strategy

Author:

Khelifi Reski1ORCID,Guermoui Mawloud1ORCID,Rabehi Abdelaziz2ORCID,Taallah Ayoub3ORCID,Zoukel Abdelhalim45ORCID,Ghoneim Sherif S. M.6ORCID,Bajaj Mohit789ORCID,AboRas Kareem M.10ORCID,Zaitsev Ievgen11ORCID

Affiliation:

1. Applied Research Unit in Renewable Energies URAER, Renewable Energy Development Center CDER, Ghardaia 47133, Algeria

2. Ziane Achour University of Djelfa, Djelfa, Algeria

3. College of Physics, Sichuan University, Chengdu, China

4. Laboratory Physico-Chemistry of Materials, Laghouat University, Algeria

5. Center for Scientific and Technical Research in Physicochemical Analysis (PTAPC-Laghouat-CRAPC), Laghouat, Algeria

6. Electrical Engineering Department, College of Engineering, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia

7. Applied Science Research Center, Applied Science Private University, Amman 11931, Jordan

8. Department of Electrical Engineering, Graphic Era (Deemed to be University), Dehradun 248002, India

9. Graphic Era Hill University, Dehradun 248002, India

10. Department of Electrical Power and Machines, Faculty of Engineering, Alexandria University, Alexandria, Egypt

11. Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Peremogy, 56, Kyiv-57, 03680, Ukraine

Abstract

This paper discusses the efficient implementation of a new hybrid approach to forecasting short-term PV power production for four different PV plants in Algeria. The developed model incorporates a time-varying filter-empirical mode decomposition (TVF-EMD) and an extreme learning machine (ELM) as an essence regression. The TVF-EMD technique is used to deal with the fluctuation of PV power data by splitting it into a series of more stable and constant subseries. The specified set of features (intrinsic mode functions (IMFs)) is utilized for training and improving our forecasting extreme learning machine model. The adjusted ELM model is used to evaluate prediction efficiency. The suggested TVF-EMD-ELM model is assessed and verified in various Algerian locations with varying climate conditions. In all examined regions, the TVF-EMD-ELM model generates less than 4% error in terms of normalized root mean square error (nRMSE).

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3