Spectral Expansion Method for Cloud Reliability Analysis

Author:

Kotteswari K.1ORCID,Bharathi A.2ORCID

Affiliation:

1. Department of Computer Science and Engineering, Annai Mira College of Engg & Techn., Vellore, India

2. Department of Information Technology, Bannari Amman Institute of Technology, Sathyamangalam, India

Abstract

Cloud computing is a computing hypothesis, where a huge group of systems is linked together in private, public, or hybrid network, to offer dynamically amendable infrastructure for data storage, file storage, and application. With this emerging technology, application hosting, delivery, content storage, and reduced computation cost are achieved, and it acts as an essential module for the backbone of the Internet of Things (IoT). The efficiency of cloud service providers (CSP) could be improved by considering significant factors such as availability, reliability, usability, security, responsiveness, and elasticity. Assessment of these factors leads to efficiency in designing a scheduler for CSP. These metrics also improved the quality of service (QoS) in the cloud. Many existing models and approaches evaluate these metrics. But these existing approaches do not offer efficient outcome. In this paper, a prominent performance model named the “spectral expansion method (SPM)” evaluates cloud reliability. The spectral expansion method (SPM) is a huge technique useful in reliability and performance modelling of the computing system. This approach solves the Markov model of cloud service providers (CSP) to predict the reliability. The SPM is better compared to matrix-geometric methods.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3