Sparsity-Based Optimization of the Sensors Positions in Radar Networks with Separated Transmit and Receive Nodes

Author:

Ivashko I. M.1,Krasnov O. A.1,Yarovoy A. G.1

Affiliation:

1. Microwave Sensing, Systems and Signals (MS3), Delft University of Technology, Mekelweg 4, 2628 CD Delft, Netherlands

Abstract

A sparsity-based approach for the joint optimization of the transmit and the receive nodes positions in the radar network with widely distributed antennas is proposed in this paper. The optimization problem is formulated as minimization of the number of radars that meet fixed target localization requirements over the surveillance area. We demonstrated that this type of the problem is different from the problem of the monostatic radar network topology optimization and implies the bilinear matrix inequality (BMI) problem. To tackle it, we propose to use the relaxation technique, which allows for joint selection of the positions for transmit and receive radar nodes. Provided numerical analysis shows that, in order to satisfy the same requirements to the target localization accuracy, the radar network with bistatic radars requires less number of the nodes than the one with monostatic radars.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Cramér-Rao Lower Bound for Analyzing the Localization Performance of a Multistatic Joint Radar-Communication System;2021 1st IEEE International Online Symposium on Joint Communications & Sensing (JC&S);2021-02-23

2. Sparsity-Driven Moving Target Detection in Distributed Multistatic FMCW Radars;2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP);2019-12

3. Radar network topology optimization for joint target position and velocity estimation;Signal Processing;2017-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3