Deep Feature Autoextraction Method for Intrapulse Data of Radar Emitter Signal

Author:

Wang Shiqiang1ORCID,Gao Caiyun2ORCID,Luo Chang34ORCID,Zeng Huiyong1ORCID,Zheng Guimei1ORCID,Zhang Qin1ORCID,Bai Juan1ORCID,Zong Binfeng1ORCID

Affiliation:

1. Air and Missile Defense College, Air Force Engineering University, Xi’an 710051, China

2. Department of Basic Science, Air Force Engineering University, Xi’an 710051, China

3. Troops of 78092, Chengdu 610000, China

4. National Defence University, Joint Operations College, Beijing 100080, China

Abstract

Concerned with the problems that the extracted features are the absence of objectivity for radar emitter signal intrapulse data because of relying on priori knowledge, a novel method is proposed. First, this method gets the sparse autoencoder by adding certain restrain to the autoencoder. Second, by optimizing the sparse autoencoder and confirming the training scheme, intrapulse deep features are autoextracted with encoder layer parameters. The method extracts the eigenvectors of six typical radar emitter signals and uses them as inputs to a support vector machine classifier. The experimental results show that the method has higher accuracy in the case of large signal-to-noise ratio. The simulation verifies that the extracted features are feasible.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3