Virtual Reality Interactive Method and Device Based on Wireless Communication Tracking

Author:

Song Shukui1ORCID

Affiliation:

1. School of Digital Arts and Design, Dalian Neusoft University of Information, Dalian, 116023 Liaoning, China

Abstract

Virtual reality is a computer system that creates a virtual world and then experiences through multiple senses. It is generated by a computer and stimulated by perception systems such as hearing, vision, touch, taste, and smell, providing users with a personal experience. Human-computer interaction is one of the core technologies of virtual reality. Wireless communication is the transmission of communications over long distances between multiple nodes without propagation through conductors or cables and can be carried out using radios, radios, etc. Wireless communication includes a variety of fixed, mobile, and portable applications such as two-way radios, mobile phones, personal digital assistants, and wireless networks. Other examples of radio wireless communication are GPS, garage door remotes, wireless mice, etc. Most wireless communication technologies use radio, including Wi-Fi with distances of just a few meters, but also deep space networks that communicate with Voyager 1 and distances of over millions of kilometers. With the continuous development of sensors and other supporting hardware facilities, the current development of human-computer interaction in virtual reality has made rapid progress. In the research to be conducted in this article, the virtual reality system used in this article cleverly integrates the three characteristics of immersion, interactivity, and conception, so that the experimenter can obtain more realistic data in comparison. To this end, this article first gives a general introduction to virtual reality technology and wireless communication tracking technology and then explains how to use wireless communication tracking technology to make the virtual reality interactive system smoother and smoother, as well as the introduction of its devices. This article explores and analyzes the possible or existing problems of wireless communication tracking technology in virtual reality interaction, hoping to contribute to the wider application of wireless communication tracking technology in virtual reality interaction. The positioning experiment on the wireless mobile signal identification points can be obtained. Among the 40 sensor nodes that are randomly deployed, when the interval of adjusting the mobile signal identification point to broadcast the current position information is 5 s, the average positioning error of the node is about 1.5 m; when the interval is 3 s, the average positioning error of the node is about 1.76 m. It can be seen that the positioning error of the node increases as the interval between the mobile signal identification points increases, which is consistent with the simulation detection result. When the node position of the target signal identification point is chosen to calculate does not just stay on the node communication circle, it introduces a certain localization distance difference, and the further the target signal identification point is from the position of the signal circle, the greater the error. Irregularity of RSS due to environmental changes analyzes the maximum error and provides the factors influencing the error and analyzing the maximum error and provide the factors that influence it.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implications of Virtual Reality on Environmental Sustainability in Restaurants based on AI;2024 10th International Conference on Communication and Signal Processing (ICCSP);2024-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3