The Chemical States of Color-Induced Cations in Tourmaline Characterized by X-Ray Photoelectron Spectroscopy

Author:

Li Ming12,Hong Hanlie1ORCID,Yin Ke1,Wang Chaowen3,Cheng Feng1,Fang Qian1

Affiliation:

1. School of Earth Sciences, China University of Geosciences, Wuhan, China

2. Department of Gemmology, Jinling Institute of Technology, Nanjing, China

3. Gemmological Institute, China University of Geosciences, Wuhan, China

Abstract

In order to better understand the effect of transition metal cations on color of tourmaline, X-ray photoelectron spectroscopy was used to investigate the species, chemical state, site occupancy, and chemical environment of color-induced metal cations in colorful tourmaline samples from Minas Gerais State, Brazil. Our results showed that the colorful tourmalines usually contained a small amount of transition metal elements, and a colorful tourmaline sample had several transition metal cations; however, the color of tourmaline resulted from the transition metal cations in the Y site of the crystal structure. The pink color of tourmaline was associated with Mn2+ in the Y site coordinating with F; the yellow color was derived from Ni2+ in the Y site binding to O; the green color was associated with Fe3+ in the Y site coordinating with O, OH, and F; the rose red color originated from Mn2+ and Ni2+ in the Y site in which Mn2+ coordinated with O and F, and Ni2+ coordinated with O; and the blue color was derived from Fe3+ and Mn2+ in the Y site in which Fe3+ binded to O, OH, and F and Mn2+ binded to F. Additionally, other transition metal cations were also observed in colorful tourmalines, but all these species occupied the Z site of the structure. In the pink and yellow samples, Fe and Cr were observed in Fe3+ and Cr3+; in the rose red sample, Fe was also found in Fe3+; in the blue sample, Cr was present in Cr3+; in the green sample, Mn, Ni, and Cu were found in Mn2+, Ni2+, and Cu2+, respectively. The color of tourmaline was induced from the absorption of the d-d transition of transition metals in the crystal structure, as charge transfer tended to occur between cations occupying different coordination positions.

Funder

Fundamental Research Funds for the Central Universities, China University of Geosciences

Publisher

Hindawi Limited

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3