Effect of Spices on the Formation of VOCs in Roasted Mutton Based on GC-MS and Principal Component Analysis

Author:

Xi Jiapei1ORCID,Zhan Ping12ORCID,Tian Honglei1ORCID,Wang Peng1ORCID

Affiliation:

1. College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, Shaanxi 710119, China

2. Food College, Shihezi University, Shihezi, Xinjiang 832000, China

Abstract

Peppertree prickly ash, Amomum tsao-ko, cumin, and ginger have long been used in Asian countries to modify the flavor and to partially neutralize any unpleasant odors present in roast lamb. The purpose of this study was to evaluate the change in the amount of volatile components present in roast lamb compared to meat added with peppertree prickly ash, Amomum tsao-ko, cumin, and ginger. Principal component analysis was carried out on the 27 initially selected from 88 volatile substances, and 15 substances with a projection of more than 0.25 in the load matrix were used as indicators to study the different contents in roasted mutton and lamb prepared by adding peppertree prickly ash, Amomum tsao-ko, cumin, and ginger. The types of VOCs (volatile organic compounds) detected in roast meat without adding spices were the least. Roast meat with the addition of cumin leads to the strongest content of aldehydes, followed by the addition of Amomum tsao-ko. Additionally, roast meat with the addition of Chinese prickly ash leads to the strongest content of terpenes, followed by the addition of ginger. Moreover, with the addition of spices, the content of volatiles responsible for the presence of a mutton odor (such as hexanal, heptanal, pentanal, (z)-4-decenal, benzaldehyde, p-propyl-anisole, and dimethyl ether) was not significantly decreased, and in fact some volatiles increased in amount such as pentanal, hexanal, octanal, and (z)-4-decenal. In conclusion, the effect of addition of spices on the volatile profile of roasted mutton and lamb can be attributed to the generation of flavor volatiles mainly derived from raw spices’ hot action, with few additional volatiles formed during boiling.

Funder

National Key Research and Development Program

Publisher

Hindawi Limited

Subject

Safety, Risk, Reliability and Quality,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3