Affiliation:
1. Zhuhai Da Hengqin Science and Technology Development Co., Ltd., China
2. Institute of Information Operation, National Defence University of PLA, Beijing 100091, China
Abstract
The explosive growth of data leads to that the traditional wireless networks cannot enable various quality of service (QoS) communication for cellular-connected multi-UAV (unmanned aerial vehicle) networks. To overcome this obstacle, we solve the joint optimization problem of channel allocation and power control for uplink NOMA-assisted multi-UAV networks. Firstly, we design a mixed integer nonlinear programming framework, where the channel gains are characterized with integral form in time interval and sorted in nondescending order as the priority index of the decoded signal. In order to propose a feasible algorithm, the initial power levels of UAVs are obtained and integrated into the original problem which is reduced to integer programming problem. Then, the UAVs whose channel gain differences satisfy the constraints will be divided into a group to share the same channel, while the initial power levels of UAVs are adjusted to get a more satisfactory initial solution for power control. Combining the solution of channel allocation and the initial power levels, we solve power control problem with asynchronous update mechanism until the power levels of UAVs remain unchanged. Finally, we propose a channel allocation algorithm and a power control algorithm with the asynchronous optimization mechanism, respectively. Simulation results show that the proposed algorithms can effectively improve the network performance in terms of the aggregated rate.
Funder
Guangdong-Macau Joint STI Project Intelligent Target Detecting and Tracking on Electronic Fence of Funder Grant Number
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献