Gymnastics Movement Signs Based on Network Communication and Body Contour Feature Extraction

Author:

Wang Haiyun1ORCID,Hu Shujun2

Affiliation:

1. Department of Physical Education, Guangzhou College of Commerce, Guangzhou, Guangdong 511363, China

2. College of Music, South China Normal University, Guangzhou, Guangdong 510006, China

Abstract

With the rapid development of computer vision technology, human action recognition technology has occupied an important position in this field. The basic human action recognition system is mainly composed of three parts: moving target detection, feature extraction, and human action recognition. In order to understand the action signs of gymnastics, this article uses network communication and contour feature extraction to extract different morphological features during gymnastics. Then, the finite difference algorithm of edge curvature is used to classify different gymnastic actions and analyze and discuss the Gaussian background. A modular method, an improved hybrid Gaussian modeling method, is proposed, which adaptively selects the number of Gaussian distributions. The research results show that, compared with traditional contour extraction, the resolution of gymnastic motion features extracted through network communication and body contour features is clearer, and the increase rate is more than 30%. Moreover, the method proposed in this paper removes noise in the image extraction process, the effect is good, and the athlete’s action marks are very clear, which can achieve the research goal.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3