Determination of Electroacupuncture Effects on circRNAs in Plasma Exosomes in Diabetic Mice: An RNA-Sequencing Approach

Author:

Shou Yin1ORCID,Hu Li2,Zhang Weibo2,Gao Yuan2,Xu Ping2ORCID,Zhang Bimeng1ORCID

Affiliation:

1. Department of Acupuncture-Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China

2. Acumox and Tuina Research Section, College of Acumox and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China

Abstract

circRNAs are involved in diabetes mellitus pathogenesis. Electroacupuncture (EA) is an effective therapeutic strategy for diabetes mellitus. However, whether the mechanism of action of EA on diabetes mellitus is related to altered circRNAs is unclear. The aim of this study was to reveal the effect of EA on circRNA expression in plasma exosomes and the underlying signaling pathway in mice with type 2 diabetes mellitus (T2DM). In total, 10 mice were randomly categorized into a normal group and 20 mice were used for the T2DM model preparation and randomly divided into the model and model + EA groups. Mice in the model + EA group were administered EA treatment. Changes in the fasting blood glucose (FBG) level and islet structure were evaluated. Plasma exosomes were subjected to RNA sequencing, and then bioinformatics analysis and real-time quantitative PCR (qPCR) verification were performed. EA treatment reduced the FBG level, preserved the islet structure, and reduced the islet β cell apoptotic rate in T2DM mice. After EA treatment, 165 differentially expressed circRNAs were found. GO and KEGG analyses revealed that thyroid hormone signaling was actively regulated by EA. circRNA/miRNA interaction analysis revealed mmu-mir-7092-3p to be closely associated with circINPP4B, suggesting that the phosphatidylinositol signaling pathway may be affected by EA. qPCR confirmed that 12 circRNAs had significant differences. These findings suggested that EA intervention can significantly protect islet function and improve the FBG level in T2DM, possibly via regulation of thyroid hormone and phosphatidylinositol signaling.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3