Working Mechanism of Nonresonance Friction in Driving Linear Piezoelectric Motors with Rigid Shaking Beam

Author:

Chen Xifu1ORCID,Lu Qian1,Huang Weiqing2,Wang Yin3ORCID

Affiliation:

1. Yancheng Institute of Technology, Yancheng 224051, China

2. Guangzhou University, Guangzhou 510006, China

3. Huaqiao University, Xiamen 361021, China

Abstract

A kind of nonresonance shaking beam motors is proposed with the advantages of simple structure, easy processing, and low cost due to its wide application prospects in precision positioning technology and precision instruments. The normal vibration model between the stator and slider is divided into contact and noncontact types to investigate the nonresonance friction drive principle for this motor. The microscopic kinematics model for stator protruding section and the interface friction model for motor systems during both operating stages are established. Accordingly, the trajectory of the stator protruding section consists of two different elliptical motions, which differ from those of resonance-type motors. The output characteristic of the nonresonance shaking beam motor is proposed under steady working conditions with reference to the research method of standing-wave-type ultrasonic motors. Numerical analysis is used to simulate the normal vibration and mechanical output characteristics of the motor. Experimental and theoretical data fitting validates the numerical analysis results and allows the future optimization of nonresonance-type motors.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3