Water-Soluble Polymer Assists N-Methyl-D-Aspartic Acid Receptor 2B siRNA Delivery to Relieve Chronic Inflammatory Pain In Vitro and In Vivo

Author:

Peng Jie1,Ma Jiahui1,Yang Xue2,He Huan1,Wu Haopeng1,Ma Tongtong1,Lu Jianhua1ORCID

Affiliation:

1. Department of Anesthesiology, Guangzhou General Hospital of Guangzhou Military Command of Chinese PLA, Guangzhou 510010, Guangdong, China

2. Department of Anesthesiology, Second Affiliated Hospital, Guangzhou University of TCM, Guangzhou 510120, Guangdong, China

Abstract

We constructed a water-soluble lipopolymer (WSLP) as a nonviral gene carrier to deliver siRNA targeting NR2B. The cytotoxicity and serum stability of WSLP loaded with siRNA were evaluated, and the knockdown efficiency of WSLP/NR2B-siRNA in PC12 cells was examined. The results showed that WSLP could protect the loading siRNAs from enzymatic degradation in serum and exhibit low cytotoxicity to cells. After transfection, WSLP/NR2B-siRNA complexes reduced the NR2B transcriptional level by 50% and protein level by 55% compared to control siRNA. Moreover, 3 days after intrathecal injection of WSLP/NR2B-siRNA complexes into rats, the NR2B protein expression decreased significantly to 58%, compared to control treatment (p<0.01). Injection of WSLP with scrambled siRNA or of polyethylenimine (PEI) with NR2B-siRNA did not show this inhibitory effect. Additionally, injection of WSLP/NR2B-siRNA complexes significantly relieved inflammatory pain in rats at 3, 4, and 5 days with reduced MWT and decreased TWL scores, while injection of WSLP with scrambled siRNA or of PEI with NR2B-siRNA did not. These results demonstrated that WSLP can efficiently deliver siRNA targeting NR2B to PC12 cells and relieve pain in rats with chronic inflammatory pain.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Anesthesiology and Pain Medicine,Neurology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3