Crop Diversity Effects on Near-Surface Soil Condition under Dryland Agriculture

Author:

Liebig Mark A.1,Archer David W.1,Tanaka Don L.1

Affiliation:

1. Northern Great Plains Research Laboratory, P.O. Box 459, Mandan, ND 58554-0459, USA

Abstract

Unprecedented changes in agricultural land use throughout the northern Great Plains of North America have highlighted the need to better understand the role of crop diversity to affect ecosystem services derived from soil. This study sought to determine the effect of four no-till cropping systems differing in rotation length and crop diversity on near-surface (0 to 10 cm) soil properties. Cropping system treatments included small grain-fallow (SG-F) and three continuously cropped rotations (3 yr, 5 yr, and Dynamic) located in south-central North Dakota, USA. Soil pH was lower in the 3 yr rotation (5.17) compared to the Dynamic (5.51) and SG-F (5.55) rotations(P0.05). Among cropping system treatments, 5 yr and Dynamic rotations possessed significantly greater soil organic C (SOC) and total N (mean = 26.3 Mg C ha−1, 2.5 Mg N ha−1) compared to the 3 yr (22.7 Mg C ha−1, 2.2 Mg N ha−1) and SG-F (19.9 Mg C ha−1, 2.0 Mg N ha−1) rotations(P0.05). Comparison of SOC measured in this study to baseline values at the research site prior to the establishment of treatments revealed only the 5 yr and Dynamic rotations increased SOC over time. The results of this study suggest that a diverse portfolio of crops is necessary to minimize soil acidification and increase SOC.

Publisher

Hindawi Limited

Subject

Earth-Surface Processes,Soil Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning Approach: Precision Agriculture Advancements Through Accurate Segmentation of Crop and Weed Density;2024 2nd International Conference on Advancement in Computation & Computer Technologies (InCACCT);2024-05-02

2. Cover Crops and Soil Health in Brazilian Agricultural Systems;ASA, CSSA, and SSSA Books;2024-03-06

3. Soil organic matter and aggregate stability dynamics under major no-till crop rotations on the Canadian prairies;Geoderma;2024-02

4. Cover crop diversity for sustainable agriculture: Insights from the Cerrado biome;Soil Use and Management;2024-01

5. Enhancing Crop Yield through Weed Density Estimation and Management: A Comprehensive Review;2023 IEEE International Conference on ICT in Business Industry & Government (ICTBIG);2023-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3