Super Broadband-Sensitive Upconversion in Tm and Ni Codoped Perovskites

Author:

Luitel Hom Nath12ORCID,Mizuno Shintaro1ORCID,Takeda Yasuhiko1ORCID

Affiliation:

1. Toyota Central Research and Development Laboratories, Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192, Japan

2. Amrit Science Campus, Tribhuvan University, Kathmandu, Nepal

Abstract

We investigated broadband-sensitive upconversion (UC) processes in a series of Tm- and Ni-sensitized ABO3 (A = Ca/Sr/Ba and B = Ti/Zr/Hf) perovskites. We have designed combinations of the sensitizers and host cations such that super broad solar radiation ranging from 900 nm to nearly 2000 nm can be efficiently upconverted to 800 nm and shorter wavelengths. The Ni2+ ions located at the center of O2− octahedra absorbed photons in the 900–1500 nm range and transferred those energies to the nearby Tm3+ ions. The Tm3+ ions upconverted those energies at 800 nm, along with the energies absorbed by themselves in the 1100–1250 and 1550–2000 nm ranges, exhibiting super broadband sensitivity. Among the ABO3:Tm, Ni (A = Ca/Sr/Ba and B = Ti/Zr/Hf) upconverters, CaTiO3:Tm, Ni exhibited the best performance due to its most distorted crystal structure, which intensified the emission and absorption extents by increasing the optical transition probabilities of Tm3+ and Ni2+ ions. Introduction of alkali ions at the Ca2+ sites and Nb5+ ions at the Ti4+ sites intensified the UC emission by many folds, mainly due to a charge balance mechanism. At the same time, bigger and smaller codoped alkali ions created an asymmetric crystal field around the active ions and further enhanced the UC emission. Importantly, the upconverted photons are within the absorption edges of GaAs, Cu2ZnSnS4, and dye-sensitized solar cells making wider applications of these upconverters besides crystalline Si solar cells.

Funder

Advanced Low Carbon Technology Research and Development Program

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3