Meta-Learning Enhanced Trade Forecasting: A Neural Framework Leveraging Efficient Multicommodity STL Decomposition

Author:

Ma Bohan1ORCID,Xue Yushan1,Chen Jing1ORCID,Sun Fangfang2

Affiliation:

1. School of Statistics and Mathematics, Central University of Finance and Economics, Beijing 100081, China

2. Research Center for International Inspection and Quarantine Standards and Technical Regulations, Beijing 100013, China

Abstract

In the dynamic global trade environment, accurately predicting trade values of diverse commodities is challenged by unpredictable economic and political changes. This study introduces the Meta-TFSTL framework, an innovative neural model that integrates Meta-Learning Enhanced Trade Forecasting with efficient multicommodity STL decomposition to adeptly navigate the complexities of forecasting. Our approach begins with STL decomposition to partition trade value sequences into seasonal, trend, and residual elements, identifying a potential 10-month economic cycle through the Ljung–Box test. The model employs a dual-channel spatiotemporal encoder for processing these components, ensuring a comprehensive grasp of temporal correlations. By constructing spatial and temporal graphs leveraging correlation matrices and graph embeddings and introducing fused attention and multitasking strategies at the decoding phase, Meta-TFSTL surpasses benchmark models in performance. Additionally, integrating meta-learning and fine-tuning techniques enhances shared knowledge across import and export trade predictions. Ultimately, our research significantly advances the precision and efficiency of trade forecasting in a volatile global economic scenario.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Reference59 articles.

1. An improved arima method based on functional principal component analysis and bidirectional bootstrap and its application to stock price forecasting;C. Feng;Academic Journal of Computing and Information Science,2022

2. Deep learning

3. Two deep learning approaches to forecasting disaggregated freight flows: convolutional and encoder–decoder recurrent

4. Effective multinational trade forecasting using LSTM recurrent neural network

5. Temporal Fusion Transformers for interpretable multi-horizon time series forecasting

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3