A Two-Stage Cascaded Detection Scheme for Double HEVC Compression Based on Temporal Inconsistency

Author:

He Peisong1ORCID,Wang Hongxia1ORCID,Zhang Ruimei1ORCID,Li Yue2ORCID

Affiliation:

1. School of Cyber Science and Engineering, Sichuan University, Chengdu 610065, China

2. School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China

Abstract

Nowadays, verifying the integrity of digital videos is significant especially for applications about multimedia communication. In video forensics, detection of double compression can be treated as the first step to analyze whether a suspicious video undergoes any tampering operations. In the last decade, numerous detection methods have been proposed to address this issue, but most existing methods design a universal detector which is hard to handle various recompression settings efficiently. In this work, we found that the statistics of different Coding Unit (CU) types have dissimilar properties when original videos are recompressed by the increased and decreased bit rates. It motivates us to propose a two-stage cascaded detection scheme for double HEVC compression based on temporal inconsistency to overcome limitations of existing methods. For a given video, CU information maps are extracted from each short-time video clip using our proposed value mapping strategy. In the first detection stage, a compact feature is extracted based on the distribution of different CU types and Kullback–Leibler divergence between temporally adjacent frames. This detection feature is fed into the Support Vector Machine classifier to identify abnormal frames with the increased bit rate. In the second stage, a shallow convolutional neural network equipped with dense connections is designed carefully to learn robust spatiotemporal representations, which can identify abnormal frames with the decreased bit rate whose forensic traces are less detectable. In experiments, the proposed method can achieve more promising detection accuracy compared with several state-of-the-art methods under various coding parameter settings, especially when the original video is recompressed with a low quality (e.g., more than 8%).

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing robustness in video data hiding against recompression with a wide parameter range;Journal of Information Security and Applications;2024-06

2. Effectiveness Evaluation of Basic Bitstream Features in Surveillance Video Recompression Forensics Using VVC;2023 IEEE International Conference on Visual Communications and Image Processing (VCIP);2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3