Virtual Reality Video Image Classification Based on Texture Features

Author:

Qin Guofang1ORCID,Qin Guoliang2

Affiliation:

1. Art College, Anyang Normal University, Anyang 455000, China

2. Hubei Guowang Huazhong Science and Technology Development Co., Ltd., Wuhan 430077, China

Abstract

As one of the most widely used methods in deep learning technology, convolutional neural networks have powerful feature extraction capabilities and nonlinear data fitting capabilities. However, the convolutional neural network method still has disadvantages such as complex network model, too long training time and excessive consumption of computing resources, slow convergence speed, network overfitting, and classification accuracy that needs to be improved. Therefore, this article proposes a dense convolutional neural network classification algorithm based on texture features for images in virtual reality videos. First, the texture feature of the image is introduced as a priori information to reflect the spatial relationship between pixels and the unique characteristics of different types of ground features. Second, the grey level cooccurrence matrix (GLCM) is used to extract the grey level correlation features of the image in space. Then, Gauss Markov Random Field (GMRF) is used to establish the statistical correlation characteristics between neighbouring pixels, and the extracted GLCM-GMRF texture feature and image intensity vector are combined. Finally, based on DenseNet, an improved shallow layer dense convolutional neural network (L-DenseNet) is proposed, which can compress network parameters and improve the feature extraction ability of the network. The experimental results show that compared with the current classification method, this method can effectively suppress the influence of coherent speckle noise and obtain better classification results.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fault Diagnosis for Terminal of 10-kV XLPE Cable Based on the Improved M-Training Algorithm;IEEE Sensors Journal;2024-04-15

2. Activity Prediction in Tri Pramana Learning Concept in ResNet-based Virtual Reality Environment;2023 International Conference on Smart-Green Technology in Electrical and Information Systems (ICSGTEIS);2023-11-02

3. Collaborative Indoor Positioning by Localization Comparison at an Encounter Position;Applied Sciences;2023-06-09

4. Virtual Reality Software and Data Processing Algorithms Packaged Online for Videos;Mobile Information Systems;2022-07-04

5. SplitNets: Designing Neural Architectures for Efficient Distributed Computing on Head-Mounted Systems;2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3