Decoding of Motor Coordination Imagery Involving the Lower Limbs by the EEG-Based Brain Network

Author:

Fu Yunfa1234ORCID,Zhou Zhouzhou12ORCID,Gong Anmin5ORCID,Qian Qian124ORCID,Su Lei12ORCID,Zhao Lei26ORCID

Affiliation:

1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China

2. Brain Cognition and Brain-computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, China

3. Brain Science and Visual Cognition Research Center, School of Medicine, Kunming University of Science and Technology, Kunming 650500, China

4. Yunnan Provincial Key Laboratory of Computer Technology Applications, Kunming, China

5. School of Information Engineering, Chinese People’s Armed Police Force Engineering University, Xian 710000, China

6. Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China

Abstract

Compared with the efficacy of traditional physical therapy, a new therapy utilizing motor imagery can induce brain plasticity and allows partial recovery of motor ability in patients with hemiplegia after stroke. Here, we proposed an updated paradigm utilizing motor coordination imagery involving the lower limbs (normal gait imagery and hemiplegic gait imagery after stroke) and decoded such imagery via an electroencephalogram- (EEG-) based brain network. Thirty subjects were recruited to collect EEGs during motor coordination imagery involving the lower limbs. Time-domain analysis, power spectrum analysis, time-frequency analysis, brain network analysis, and statistical analysis were used to explore the neural mechanisms of motor coordination imagery involving the lower limbs. Then, EEG-based brain network features were extracted, and a support vector machine was used for decoding. The results showed that the two employed motor coordination imageries mainly activated sensorimotor areas; the frequency band power was mainly concentrated within theta and alpha bands, and brain functional connections mainly occurred in the right forehead. The combination of the network attributes of the EEG-based brain network and the spatial features of the adjacency matrix had good separability for the two kinds of gait imagery ( p  < 0.05), and the average classification accuracy of the combination feature was 92.96% ± 7.54%. Taken together, our findings suggest that brain network features can be used to identify normal gait imagery and hemiplegic gait imagery after stroke.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3