Deep Learning Algorithm-Based Financial Prediction Models

Author:

Jia Helin1ORCID

Affiliation:

1. Faculty of Finance, City University of Macau, Macau 999078, China

Abstract

In this paper, a new FEPA portfolio forecasting model is based on the EMD decomposition method. The model is based on the special empirical modal decomposition of financial time series, principal component analysis, and artificial neural network to model and forecast for nonlinear, nonstationary, multiscale complex financial time series to predict stock market indices and foreign exchange rates and empirically investigate this hot area in financial market research. The combined forecasting model proposed in this paper is based on the idea of decomposition-reconstruction synthesis, which effectively improves the model’s prediction of internal financial time series. In this paper, we select the CSI 300 Index and foreign exchange rate as the empirical market and data and establish seven forecasting models to make predictions about the short-term running trend of the closing price. The interval EMD decomposition algorithm is introduced in this paper, considering both high and low prices to be contained in the input and output. By analyzing the closing price, high and low prices of the stock index at the same time, the volatility of this interval time series of the index and its trend can be better captured.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference25 articles.

1. Financial prices dynamics and agent-based models as inspiring by benefit Mandelbrot;B. Lebanon;The European Physical Journal Special Topics,2016

2. Hybrid simulation modelling in operational research: A state-of-the-art review

3. An interdisciplinary model for macroeconomics

4. Application of collective knowledge diffusion in a social network environment;M. Melissa;Enterprise Information Systems,2019

5. A Survey of Learning Classifier Systems in Games [Review Article]

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3