Performance Comparison between the Specific and Baseline Prediction Models of Ecotoxicity for Pharmaceuticals: Is a Specific QSAR Model Inevitable?

Author:

Bu Qingwei1ORCID,Li Qingshan1ORCID,Liu Yun1ORCID,Cai Chun1ORCID

Affiliation:

1. School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China

Abstract

Assessing the ecotoxicity of pharmaceuticals is of urgent need due to the recognition of their possible adverse effects on nontarget organisms in the aquatic environment. The reality of ecotoxicity data scarcity promotes the development and application of quantitative structure activity relationship (QSAR) models. In the present study, we aimed to clarify whether a QSAR model of ecotoxicity specifically for pharmaceuticals is needed considering that pharmaceuticals are a class of chemicals with complex structures, multiple functional groups, and reactive properties. To this end, we conducted a performance comparison of two previously developed and validated QSAR models specifically for pharmaceuticals with the commonly used narcosis toxicity prediction model, i.e., Ecological Structure Activity Relationship (ECOSAR), using a subset of pharmaceuticals produced in China that had not been included in the training datasets of QSAR models under consideration. A variety of statistical measures demonstrated that the pharmaceutical specific model outperformed ECOSAR, indicating the necessity of developing a specific QSAR model of ecotoxicity for the active pharmaceutical contaminants. ECOSAR, which was generally used to predict the baseline or the minimum toxicity of a compound, generally underestimated the ecotoxicity of the analyzed pharmaceuticals. This could possibly be because some pharmaceuticals can react through specific modes of action. Nonetheless, it should be noted that 95% prediction intervals spread over approximately four orders of magnitude for both tested QSAR models specifically for pharmaceuticals.

Funder

Beijing Municipal Natural Science Foundation

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PREDICTIVE ECOTOXICOLOGICAL STUDY OF FUNGICIDES DERIVED FROM LUOTONIN A;Revista Multidisciplinar do Nordeste Mineiro;2024-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3