Ink Art Three-Dimensional Big Data Three-Dimensional Display Index Prediction Model

Author:

Cao Xiaonan1ORCID

Affiliation:

1. Department of Design, Shandong University of Arts, Jinan 250014, Shandong, China

Abstract

This paper starts with the study of realistic three-dimensional models, from the two aspects of ink art style simulation model and three-dimensional display technology, explores the three-dimensional display model of three-dimensional model ink style, and conducts experiments through the software development platform and auxiliary software. The feasibility of the model is verified. Aiming at the problem of real-time rendering of large-scale 3D scenes in the model, efficient visibility rejection method and a multiresolution fast rendering method were designed to realize the rapid construction and rendering of ink art 3D virtual reality scenes in a big data environment. A two-dimensional cellular automaton is used to simulate a brushstroke model with ink and wash style, and outlines are drawn along the path of the brushstroke to obtain an effect close to the artistic style of ink and wash painting. Set the surface of the model with ink style brushstroke texture patterns, refer to the depth map, normal map, and curvature map information of the model, and simulate the drawing effect of the method by procedural texture mapping. Example verification shows that the rapid visualization analysis model of ink art big data designed in this paper is in line with the prediction requirements of ink art big data three-dimensional display indicators. The fast visibility removal method is used to deal with large-scale three-dimensional ink art in a big data environment. High efficiency is achieved in virtual reality scenes, and the multiresolution fast rendering method better maintains the appearance of the prediction model without major deformation.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3