Investigation of Key Signaling Pathways Associating miR-204 and Common Retinopathies

Author:

Bereimipour Ahmad12ORCID,Satarian Leila1ORCID,Taleahmad Sara3ORCID

Affiliation:

1. Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran

2. Faculty of Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran

3. Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran

Abstract

MicroRNAs are a large group of small noncoding RNAs that work in multiple cellular pathways. miR-204, as one of the key axes in the development, maintenance, and pathogenesis of the retina, plays several roles by modulating its target genes. This study was aimed at evaluating the target genes of miR-204 involved in the development and progression of common retinopathies such as glaucoma, retinoblastoma, and age-related macular degeneration. In this study, three datasets related to retinopathies (GSE50195, GSE27276, and GSE97508) were selected from Gene Expression Omnibus. miR-204 target genes were isolated from TargeScan. The shares between retinopathy and miR-204 target genes were then categorized. Using Enrichr and STRING, we highlighted the signaling pathways and the relationships between the proteins. SHC1 events in ERBB2, adherent junction’s interactions, NGF signaling via TRKA from the plasma membrane, IRF3-mediated activation of type 1 IFN, pathways in upregulated genes and G0 and early G1, RORA-activated gene expression, PERK-regulated gene expression, adherent junction’s interactions, and CREB phosphorylation pathways in downregulated genes were identified in glaucoma, retinoblastoma, and age-related macular degeneration. WEE1, SMC2, HMGB1, RRM2, and POLA1 proteins were also observed to be involved in the progression and invasion of retinoblastoma; SLC24A2 and DTX4 in age-related macular degeneration; and EPHB6, EFNB3, and SHC1 in glaucoma. Continuous bioinformatics analysis has shown that miR-204 has a significant presence and expression in retinal tissue, and approximately 293 genes are controlled and regulated by miR-204 in this tissue; also, target genes of miR-204 have the potential to develop various retinopathies; thus, a study of related target genes can provide appropriate treatment strategies in the future.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exosomal MicroRNA Profiling in Vitreous Humor Derived From Pathological Myopia Patients;Investigative Opthalmology & Visual Science;2023-01-17

2. Regulation of K+-Dependent Na+/Ca2+-Exchangers (NCKX);International Journal of Molecular Sciences;2022-12-29

3. Retinoblastoma: Review and new insights;Frontiers in Oncology;2022-11-02

4. The clinical diagnostic value of plasma miR-592 and miR-217-3p levels in retinoblastoma;Journal of Medical Biochemistry;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3