Affiliation:
1. School of Intelligent Manufacturing, Wuhan Technical College of Communications, Wuhan 430065, China
2. Faculty of Physics and Electronic Science, Hubei University, Wuhan 430062, China
3. Jiangsu Midea Cleaning Appliance Co., Ltd, Suzhou 215131, China
Abstract
Inverse kinematics (IK) has been extensively applied in the areas of robotics, computer animation, ergonomics, and gaming. Typically, IK determines the joint configurations of a robot model and achieves a desired end-effector position in robotics. Since forward and backward teaching inverse kinematics (FABRIK) is a forward and backward iterative method that finds updated joint positions by locating a point on a line instead of using angle rotations or matrices, it has the advantages of fast convergence, low computational cost, and visualizing realistic poses. However, the manipulators usually work in a complex environment. So, the kinematic chains are easy to produce the interference with their surrounding scenarios. To resolve the above mentioned problem, a two-step obstacle avoidance technology is proposed to extend the basic FABRIK in this study. The first step is a heuristic method that locates the updated linkage bar, the root joint, and the target position in a line, so that the interference can be eliminated in most cases. In the second step, multiple random rotation strategies are adopted to eliminate the interference that has not been eliminated in the first step. Experimental results have shown that the extending FABRIK has the obstacle avoidance ability.
Funder
Natural Science Foundation of Hubei Province
Subject
General Computer Science,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献