Multiconstraint-Aware Routing Mechanism for Wireless Body Sensor Networks

Author:

Bangash Javed Iqbal1ORCID,Khan Abdul Waheed2,Khan Asfandyar1,Khan Atif3ORCID,Uddin M. Irfan4,Hua Qiaozhi5ORCID

Affiliation:

1. Institute of Computer Sciences and IT, The University of Agriculture, Peshawar 25000, Pakistan

2. Department of IT and Computer Science, Pak-Austria Fachhochschule-Institute of Applied Sciences and Technology, Haripur, Pakistan

3. Department of Computer Science, Islamia College Peshawar, Peshawar, Pakistan

4. Institute of Computing, Kohat University of Science and Technology, Kohat 26000, Pakistan

5. Computer School, Hubei University of Arts and Science, Xiangyang 441000, China

Abstract

The merger of wireless sensor technologies, pervasive computing, and biomedical engineering has resulted in the emergence of wireless body sensor network (WBSN). WBSNs assist human beings in various monitoring applications such as health-care, entertainment, rehabilitation systems, and sports. Life-critical health-care applications of WBSNs consider both reliability and delay as major Quality of Service (QoS) parameters. In addition to the common limitations and challenges of wireless sensor networks (WSNs), WBSNs pose distinct constraints due to the behavior and chemistry of the human body. The biomedical sensor nodes (BMSNs) adopt multihop communication while reporting the heterogeneous natured physiological parameters to the nearby base station also called local coordinator. Routing in WBSNs becomes a challenging job due to the necessary QoS considerations, overheated in-body BMSNs, and high and dynamic path loss. To the best of our knowledge, none of the existing routing protocols integrate the aforementioned issues in their designs. In this research work, a multiconstraint-aware routing mechanism (modular-based) is proposed which considers the QoS parameters, dynamic and high path loss, and the overheated nodes issue. Two types of network frameworks, with and without relay/forwarder nodes, are being used. The data packets containing physiological parameters of the human body are categorized into delay-constrained, reliability-constrained, critical (both delay- and reliability-constrained), and nonconstrained data packets. NS-2 is being used to carry out the simulations of the proposed mechanism. The simulation results reveal that the proposed mechanism has improved the QoS-aware routing for WBSNs by adopting the proposed multiconstraint-aware strategy.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3