An Improved L-Shaped Method for Solving Process Flexibility Design Problems

Author:

Yang Huasheng1ORCID,Gupta Jatinder N. D.2,Yu Lina13,Zheng Li1

Affiliation:

1. Department of Industrial Engineering, Tsinghua University, Beijing 100084, China

2. University of Alabama in Huntsville, Huntsville, AL 35899, USA

3. Logistics Engineering and Simulation Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China

Abstract

Process flexibility, where a plant is able to produce different types of products, is introduced to mitigate mismatch risk caused by demand uncertainties. Thelong chain designproposed by Jordan and Graves in 1995 has been shown to be able to reap most benefits of full-flexibility structure (where each plant is able to produce all products) in balanced systems (where the numbers of products and plants are equal). However, when systems are not balanced or asymmetric or when response dimension is taken into consideration, long chain design may not be the best configuration. Therefore, this paper models the process flexibility design problem in more general settings. The paper considers both balanced and unbalanced systems with asymmetric plants considering response dimension. The problem is formulated as a two-stage stochastic program which is solved by an adapted L-shaped method, combining it with several enhancements. To the best of our knowledge, this is the first time L-shaped method is used to solve the process flexibility design problem. The effectiveness and efficiency of the proposed method and enhancements are evaluated. Finally, the comparison between design methods proposed in this paper and in existing literature shows the superiority of the former.

Funder

Ministry of Science and Technology of the People’s Republic of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An asynchronous parallel benders decomposition method for stochastic network design problems;Computers & Operations Research;2024-02

2. Modelling manufacturing process flexibility: A systematic review;2022 IEEE 28th International Conference on Engineering, Technology and Innovation (ICE/ITMC) & 31st International Association For Management of Technology (IAMOT) Joint Conference;2022-06-19

3. Benders decomposition for a reverse logistics network design problem in the dairy industry;Annals of Operations Research;2021-10-25

4. An empirical analysis of capacity and flexibility planning under demand uncertainty;International Journal of Management Science and Engineering Management;2021-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3