Theoretical and Experimental Comparison Results of Dual-Channel 3D Quasi-Optical Network System between Frequency Selective Surface and Wire Grid Polarizer

Author:

Wang Hai1ORCID,Liu Xiaoming2,Yu Junsheng1ORCID,Lu Zejian3,Chen Xiaodong4

Affiliation:

1. BUPT-QMUL EM Theory and Application International Research Lab, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. College of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui Province 241002, China

3. China Academy of Electronics and Information Technology, Beijing 100041, China

4. School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, UK

Abstract

A dual-channel 3D quasi-optical network (QON) system is analyzed and compared by theoretical and experimental results. It is divided into dual-channel signals by frequency selective surface (FSS) or wire grid polarizer (WGP) for transmitting the 324 GHz signal on the top layer while diverting the 183 GHz signal to the bottom layer. The system structure based on the beam radius is traced by the complex beam parameter and system transfer matrix for deciding the positions of cascade mirrors. The design principles and test results of FSS with perforated hexagonal array and WGP printed on the dielectric substrate are discussed together. In order to evaluate channel performance, the output planar near-fields of QON system are simulated and tested by the four reflections and three transmission results, respectively, where both scalar and vector conversion efficiencies are used to evaluate the quality of output beams. For the distortion phenomenon and energy loss in planar field, the aperture modes of corrugated horn feeds are analyzed by spherical wave expansion (SWE) to explain the asymmetrical pattern characteristic. The cut section of the far-field pattern is also directly measured in the compact antenna test range (CATR), comparing with the far-field patterns that are indirectly obtained based on the principle of near-to-far-field transformation and ideal aperture field integral of quiet zone (QZ). The differences between the near- and far-field test in QON have been compared, and discussion that the corresponding experimental results verify the WGP has better work performance in the good pattern symmetry, high cross-polarization isolation, low energy loss, and side-lobe level.

Funder

Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3