Performance of Heat Pump Air Conditioning with R1234ze (HFO) as a Refrigerant

Author:

Kumar Subhash1ORCID,Raibhole Vaijanath N.2,Majumder Himadri1ORCID

Affiliation:

1. Mechanical Engineering Department, G H Raisoni College of Engineering and Management, Pune 412207, India

2. Mechanical Engineering Department, Modern Education Society College of Engineering, Pune 411001, India

Abstract

The study shows that refrigerants R1234ze (E) and R1234ze (Z), known for their low global warming potential, are likely to become primary choices in heat pump air conditioning for residential and commercial use. The research evaluates the thermodynamic properties of R1234ze (Z) using experimental, thermodynamic, and numerical analyses. It addresses F-gas regulation requirements and aligns with the Paris Agreement goals by exploring various refrigerants, including R227ea, R114, R236fa, R134a, R1234ze (Z), and R245fa, as potential candidates for evolving industry needs. The analysis indicates that R1234ze (Z) outperforms other working fluids in heat pump applications, with an optimized theoretical coefficient of performance (COP) at a condensation temperature 22 K lower than critical temperatures. However, actual COP deviates due to a significant pressure drop, especially with inadequate volumetric capacity. A key finding is that a substantial portion of the pressure reduction is attributed to mitigating irreversible losses, estimated at a condensation temperature of 70–75°C, emphasizing the complex relationship between pressure and performance. The study suggests that R1234ze (Z) is more suitable for high-temperature applications than traditional air conditioning systems. In a parallel assessment, the initial calculation of the coefficient of performance for R245fa evaluates the reliability of a new refrigeration industry arrangement. Test results for heat pump technology reveal that R1234ze (Z) achieves an impressive COP of up to 3.60 at a buildup temperature of 90°C with a temperature differential of 45 K. This positions R1234ze (Z) as a suitable choice for heat pump applications prioritizing simplicity in system design.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3