Revisiting Controls on Shale Oil Accumulation in Saline Lacustrine Basins: The Permian Lucaogou Formation Mixed Rocks, Junggar Basin

Author:

Zhang Chenjia1,Cao Jian1ORCID,Li Erting2,Wang Yuce1,Xiao Wenyao1,Qin Yang3

Affiliation:

1. State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China

2. PetroChina Xinjiang Oilfield Company, Karamay, Xinjiang 834000, China

3. PetroChina Research Institute of Petroleum Exploration & Development-Northwest, Lanzhou 730020, China

Abstract

Fine-grained mixed rocks in saline lacustrine basins are important targets for shale oil exploration. However, the controls on shale oil accumulation are complex due to the multi-source mixed deposition. This is a challenging issue in the study of shale oil. Here, we present a case study in the Middle Permian Lucaogou Formation in the Jimusar Sag, Junggar Basin, northwestern China. Results show that the Lucaogou Formation consists mainly of carbonate rocks, dolomitic or calcareous mudstones, tuffaceous or silty mudstones, and siltstones. The dolomitic/calcareous mudstones ( TO C average = 6.44 wt . % ) and tuffaceous/silty mudstones ( TO C average = 4.83 wt . % ) have the best hydrocarbon generation potential and contain type I–II1 kerogens that are in the peak oil generation stage. However, the shale oil potential is highest for the carbonate rocks and siltstones with average oil saturation index (OSI) values of 315.03 mg HC/g TOC and 343.27 mg HC/g TOC, respectively. This indicates that hydrocarbon generation potential is not the main factor controlling shale oil potential. Micro-nanoscale pores are the main control. Abundant dissolution pores provide excellent reservoir space for near-source migration and accumulation of shale oil. Different mixing processes between lithofacies control the accumulation of shale oil, and shale oil productivity is the best when multi-facies deposition in transitional zones formed the mixed rocks (facies mixing). In addition, local accumulations of calcareous organisms and adjacent carbonate components on terrigenous sediments (in situ mixing) are also conducive to shale oil enrichment. This is an unusual and special feature of saline lacustrine shale oils, which is different from freshwater lacustrine and marine shale oils. Comprehensive assessment of source rock and reservoir is needed to robustly establish a widely applicable method to determine the shale oil potential in such basins.

Funder

PetroChina Science and Technology Major Project

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3