Study on Behind Helmet Blunt Trauma Caused by High-Speed Bullet

Author:

Cai Zhihua1ORCID,Huang Xingyuan1ORCID,Xia Yun1,Li Guibing1ORCID,Fan Zhuangqing2ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, Hunan University of Science and Technology, Xiangtan, China

2. Daping Hospital, Army Medical University, Chongqing, China

Abstract

The mechanism of Behind Helmet Blunt Trauma (BHBT) caused by a high-speed bullet is difficult to understand. At present, there is still a lack of corresponding parameters and test methods to evaluate this damage effectively. The purpose of the current study is therefore to investigate the response of the human skull and brain tissue under the loading of a bullet impacting a bullet-proof helmet, with the effects of impact direction, impact speed, and impactor structure being considered. A human brain finite element model which can accurately reconstruct the anatomical structures of the scalp, skull, brain tissue, etc., and can realistically reflect the biomechanical response of the brain under high impact speed was employed in this study. The responses of Back Face Deformation (BFD), brain displacement, skull stress, and dura mater pressure were extracted from simulations as the parameters reflecting BHBT risk, and the relationships between BHBT and bullet-proof equipment structure and performance were also investigated. The simulation results show that the frontal impact of the skull produces the largest amount of BFD, and when the impact directions are from the side, the skull stress is about twice higher than other directions. As the impact velocity increases, BFD, brain displacement, skull stress, and dura mater pressure increase. The brain damage caused by different structural bullet bodies is different under the condition of the same kinetic energy. The skull stress caused by the handgun bullet is the largest. The findings indicate that when a bullet impacts on the bullet-proof helmet, it has a higher probability of causing brain displacement and intracranial high pressure. The research results can provide a reference value for helmet optimization design and antielasticity evaluation and provide the theoretical basis for protection and rescue.

Funder

Educational Commission of Hunan Province of China

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3