Free-Breathing 3D Imaging of Right Ventricular Structure and Function Using Respiratory and Cardiac Self-Gated Cine MRI

Author:

Zhu Yanchun123,Liu Jing3,Weinsaft Jonathan4,Spincemaille Pascal3,Nguyen Thanh D.3,Prince Martin R.3,Bao Shanglian2,Xie Yaoqin1,Wang Yi3

Affiliation:

1. Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Nanshan District, Shenzhen 518055, China

2. Beijing City Key Lab of Medical Physics and Engineering, School of Physics, Peking University, 201 Chengfu Road, Haidian District, Beijing 100871, China

3. Department of Radiology, Weill Cornell Medical College, 515 East 71th Street, New York, NY 10021, USA

4. Division of Cardiology, Department of Medicine, Weill Cornell Medical College, 520 East 70th Street, New York, NY 10065, USA

Abstract

Providing a movie of the beating heart in a single prescribed plane, cine MRI has been widely used in clinical cardiac diagnosis, especially in the left ventricle (LV). Right ventricular (RV) morphology and function are also important for the diagnosis of cardiopulmonary diseases and serve as predictors for the long term outcome. The purpose of this study is to develop a self-gated free-breathing 3D imaging method for RV quantification and to evaluate its performance by comparing it with breath-hold 2D cine imaging in 7 healthy volunteers. Compared with 2D, the 3D RV functional measurements show a reduction of RV end-diastole volume (RVEDV) by 10%, increase of RV end-systole volume (RVESV) by 1.8%, reduction of RV systole volume (RVSV) by 21%, and reduction of RV ejection fraction (RVEF) by 12%. High correlations between the two techniques were found (RVEDV: 0.94; RVESV: 0.85; RVSV: 0.95; and RVEF: 0.89). Compared with 2D, the 3D image quality measurements show a small reduction in blood SNR, myocardium-blood CNR, myocardium contrast, and image sharpness. In conclusion, the proposed self-gated free-breathing 3D cardiac cine imaging technique provides comparable image quality and correlated functional measurements to those acquired with the multiple breath-hold 2D technique in RV.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3