Assessments ofk-kLTurbulence Model Based on Menter’s Modification to Rotta’s Two-Equation Model

Author:

Abdol-Hamid Khaled S.1

Affiliation:

1. NASA Langley Research Center, Hampton, VA 23693, USA

Abstract

The main objective of this paper is to construct a turbulence model with a more reliable second equation simulating length scale. In the present paper, we assess the length scale equation based on Menter’s modification to Rotta’s two-equation model. Rotta shows that a reliable second equation can be formed in an exact transport equation from the turbulent length scale and kinetic energy. Rotta’s equation is well suited for a term-by-term modeling and shows some interesting features compared to other approaches. The most important difference is that the formulation leads to a natural inclusion of higher order velocity derivatives into the source terms of the scale equation, which has the potential to enhance the capability of Reynolds-averaged Navier-Stokes to simulate unsteady flows. The model is implemented in the CFD solver with complete formulation, usage methodology, and validation examples to demonstrate its capabilities. The detailed studies include grid convergence. Near-wall and shear flows cases are documented and compared with experimental and large eddy simulation data. The results from this formulation are as good or better than the well-known shear stress turbulence model and much better thank-εresults. Overall, the study provides useful insights into the model capability in predicting attached and separated flows.

Publisher

Hindawi Limited

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3