Posttranslational Nitration of Tyrosine Residues Modulates Glutamate Transmission and Contributes to N-Methyl-D-aspartate-Mediated Thermal Hyperalgesia

Author:

Muscoli Carolina123,Dagostino Concetta34ORCID,Ilari Sara123,Lauro Filomena123ORCID,Gliozzi Micaela12,Bardhi Erlisa1,Palma Ernesto12,Mollace Vincenzo123,Salvemini Daniela5

Affiliation:

1. Department of Health Sciences, University “Magna Graecia”, Edificio Bioscienze, Viale Europa, Campus Salvatore Venuta, Germaneto, 88100 Catanzaro, Italy

2. Interregional Research Center for Food Safety & Health (IRC FSH), Viale Europa, Campus Salvatore Venuta, Germaneto, 88100 Catanzaro, Italy

3. Drug Center, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00163 Roma, Italy

4. University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy

5. Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104, USA

Abstract

Activation of the N-methyl-D-aspartate receptor (NMDAR) is fundamental in the development of hyperalgesia. Overactivation of this receptor releases superoxide and nitric oxide that, in turn, forms peroxynitrite (PN). All of these events have been linked to neurotoxicity. The receptors and enzymes involved in the handling of glutamate pathway—specifically NMDARs, glutamate transporter, and glutamine synthase (GS)—have key tyrosine residues which are targets of the nitration process causing subsequent function modification. Our results demonstrate that the thermal hyperalgesia induced by intrathecal administration of NMDA is associated with spinal nitration of GluN1 and GluN2B receptor subunits, GS, that normally convert glutamate into nontoxic glutamine, and glutamate transporter GLT1. Intrathecal injection of PN decomposition catalyst FeTM-4-PyP5+prevents nitration and overall inhibits NMDA-mediated thermal hyperalgesia. Our study supports the hypothesis that nitration of key proteins involved in the regulation of glutamate transmission is a crucial pathway used by PN to mediate the development and maintenance of NMDA-mediated thermal hyperalgesia. The broader implication of our findings reinforces the notion that free radicals may contribute to various forms of pain events and the importance of the development of new pharmacological tool that can modulate the glutamate transmission without blocking its actions directly.

Funder

Investiamo nel vostro futuro

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3