A New Approach to Separate Haemodynamic Signals for Brain-Computer Interface Using Independent Component Analysis and Least Squares

Author:

Zhang Yan1,Liu Xin2,Yang Chunling1,Wang Kuanquan3,Sun Jinwei1,Rolfe Peter1

Affiliation:

1. School of Electrical Engineering and Automaton, Harbin Institute of Technology, Harbin 150001, China

2. School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China

3. School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China

Abstract

Brain-computer interface (BCI) is one technology that allows a user to communicate with external devices through detecting brain activity. As a promising noninvasive technique, functional near-infrared spectroscopy (fNIRS) has recently earned increasing attention in BCI studies. However, in practice fNIRS measurements can suffer from significant physiological interference, for example, arising from cardiac contraction, breathing, and blood pressure fluctuations, thereby severely limiting the utility of the method. Here, we apply the multidistance fNIRS method, with short-distance and long-distance optode pairs, and we propose the combination of independent component analysis (ICA) and least squares (LS) with the fNIRS recordings to reduce the interference. The short-distance fNIRS measurement is treated as the virtual channel and the long-distance fNIRS measurement is treated as the measurement channel. Least squares is used to optimize the reconstruction value for brain activity signal. Monte Carlo simulations of photon propagation through a five-layered slab model of a human adult head were implemented to evaluate our methodology. The results demonstrate that the ICA method can separate the brain signal and interference; the further application of least squares can significantly recover haemodynamic signals contaminated by physiological interference from the fNIRS-evoked brain activity data.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3