A Segmentation Method of Foramen Ovale Based on Multiatlas

Author:

Zhao Jiashi12ORCID,Ge Huatao1ORCID,He Wei12ORCID,Li Yanfang12ORCID,Shi Weili12ORCID,Jiang Zhengang12ORCID,Li Yonghui1ORCID,Li Xingzhi3ORCID

Affiliation:

1. School of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, China

2. Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528436, China

3. Bethune First Hospital of Jilin University, Changchun 130012, China

Abstract

Trigeminal neuralgia is a neurological disease. It is often treated by puncturing the trigeminal nerve through the skin and the oval foramen of the skull to selectively destroy the pain nerve. The process of puncture operation is difficult because the morphology of the foramen ovale in the skull base is varied and the surrounding anatomical structure is complex. Computer-aided puncture guidance technology is extremely valuable for the treatment of trigeminal neuralgia. Computer-aided guidance can help doctors determine the puncture target by accurately locating the foramen ovale in the skull base. Foramen ovale segmentation is a prerequisite for locating but is a tedious and error-prone task if done manually. In this paper, we present an image segmentation solution based on the multiatlas method that automatically segments the foramen ovale. We developed a data set of 30 CT scans containing 20 foramen ovale atlas and 10 CT scans for testing. Our approach can perform foramen ovale segmentation in puncture operation scenarios based solely on limited data. We propose to utilize this method as an enabler in clinical work.

Funder

Key Research and Development Projects of China’s Jilin Province Science and Technology Development Plan

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3