A Novel Approach for Malicious URL Detection Based on the Joint Model

Author:

Yuan JianTing1ORCID,Liu YiPeng2ORCID,Yu Long3ORCID

Affiliation:

1. School of Software, Xinjiang University, Urumqi 830000, China

2. School of Information Science and Engineering, Xinjiang University, Urumqi 830000, China

3. Network Center, Xinjiang University, Urumqi 830000, China

Abstract

The number of malicious websites is increasing yearly, and many companies and individuals worldwide have suffered losses. Therefore, the detection of malicious websites is a task that needs continuous development. In this study, a joint neural network algorithm model combining the attention mechanism, bidirectional independent recurrent neural network (Bi-IndRNN), and capsule network (CapsNet) is proposed. The word vector tool word2vec trains the character- and word-level uniform resource locator (URL) static embedding vector features. At the same time, the algorithm will also extract texture fingerprint features that can compare the content differences of different malicious web URL binary files. Then, the extracted features are fused and input into the joint neural network algorithm model. First, the multihead attention mechanism is used to extract contextual semantic features by adjusting weights and Bi-IndRNN. Second, CapsNet with dynamic routing is used to extract deep semantic information. Finally, the sigmoid classifier is used for classification. This study uses different methods from different angles to extract more comprehensive features. From the experimental results, the method proposed in this study improves the classification accuracy of malicious web page detection compared with other researchers.

Funder

Xinjiang Autonomous Region Key R&D Project

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Reference41 articles.

1. Kaspersky security bulletin 2020. statistics;Kaspersky,2020

2. A deep learning approach to fast, format-agnostic detection of malicious web content;J. Saxe

3. HiremathP. N.A novel approach for analyzing and classifying malicious web pages2021Dayton, OH, USAUniversity of DaytonDoctoral dissertation

4. Malicious Hidden Redirect Attack Web Page Detection Based on CSS Features

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3