Analytical Engines are Unnecessary in Top-down Partitioning-based Placement

Author:

Alpert C. J.1,Caldwell A. E.2,Chan T. F.3,Huang D. J.-H.4,Kahng A. B.2,Markov I. L.2,Moroz M. S.5

Affiliation:

1. IBM Austin Research Laboratory, Austin 78758, TX, USA

2. UCLA Computer Science Dept., Los Angeles 90095-1596, CA, USA

3. UCLA Mathematics Dept., Los Angeles 90095-1555, CA, USA

4. Silicon Perspective Corp., Santa Clara 95054, CA, USA

5. UCLA Anderson Graduate School of Management, Los Angeles 90095, CA, USA

Abstract

The top-down “quadratic placement” methodology is rooted in such works as [36, 9, 32] and is reputedly the basis of commercial and in-house VLSI placement tools. This methodology iterates between two basic steps: solving sparse systems of linear equations to achieve a continuous placement solution, and “legalization” of the placement by transportation or partitioning. Our work, which extends [5], studies implementation choices and underlying motivations for the quadratic placement methodology. We first recall some observations from [5], e.g., that (i) Krylov subspace engines for solving sparse linear systems are more effective than traditional successive over-relaxation (SOR) engines [33] and (ii) that correlation convergence criteria can maintain solution quality while using substantially fewer solver iterations. The focus of our investigation is the coupling of numerical solvers to iterative partitioners that is a hallmark of the quadratic placement methodology. We provide evidence that this coupling may have historically been motivated by the pre-1990’s weakness of min-cut partitioners, i.e., numerical engines were needed to provide helpful hints to weak min-cut partitioners. In particular, we show that a modern multilevel FM implementation [2] derives no benefit from such coupling. We also show that most insights obtained from study of individual min-cut partitioning instances (within the top-down placement) also hold within the overall context of a complete top-down placer implementation.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Hardware and Architecture

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3